您的当前位置:首页 > 焦点 > NeurIPS 2025 正文
时间:2025-12-07 17:44:58 来源:网络整理 编辑:焦点
共同一作:洪翔宇,清华大学电子系大四本科生,曾获清华大学蒋南翔奖学金等,曾在NeurIPS,EMNLP,NAACL等顶级会议上发表论文。姜澈,清华大学电子系博士三年级在读,主要研究方向为LLM Int
![]()
共同一作:洪翔宇,清华大学电子系大四本科生,曾获清华大学蒋南翔奖学金等,泰安市某某医疗设备专卖店曾在NeurIPS,EMNLP,NAACL等顶级会议上发表论文。姜澈,清华大学电子系博士三年级在读,主要研究方向为LLM Interpretebility,LLM Agent,曾在NeurIPS,ICML,泰安市某某医疗设备专卖店EMNLP,NAACL等顶级会议上发表论文。
随着大型语言模型在各类任务中展现出卓越的生成与推理能力,如何将模型输出精确地追溯到其内部计算过程,已成为 AI 可解释性研究的重要方向。然而,现有方法往往计算代价高昂、难以揭示中间层的信息流动;同时,不同层面的归因(如 token、模型组件或表示子空间)通常依赖各自独立的特定方法,缺乏统一且高效的分析框架。
针对这一问题,来自清华、上海 AI Lab 的研究团队提出了全新的统一特征归因框架——DePass(Decomposed Forward Pass)。
该方法通过将前向传播中的每个隐藏状态分解为多个可加子状态,并在固定注意力权重与 MLP 激活的情况下对其逐层传播,实现了对 Transformer 内部信息流的无损分解与精确归因。借助 DePass,研究者能够在输入 token、注意力头、神经元乃至残差流子空间等多个层面上进行归因分析,为机制可解释性研究提供了统一而细粒度的新视角。
![]()
问题分析:
现有归因方法的局限性
现有的归因方法大致可以分为以下几类:
DePass:
一种全新的归因框架
![]()
实验验证:
DePass 的有效性
DePass 提供了一个统一的归因框架,支持在输入 token、注意力头、神经元以及残差流子空间等多个层面进行一致归因,无需修改模型结构或依赖任务特定近似,并可自然衔接人类推理及稀疏字典学习(如 SAE)等方法。研究团队在 token 级、模型组件级和子空间级归因任务上验证了 DePass 的有效性:
Token-Level DePass——输出归因到输入:精准识别驱动预测的核心证据
我们首先在输出到输入 token 的归因任务上验证了 DePass 的表现,目标是评估每个输入 token 对模型最终输出的实际贡献。
在「Disrupt-top」实验中,移除 DePass 判定最关键的 tokens 会导致模型输出概率急剧下降,表明其捕捉到了真正驱动预测的核心证据;而在「Recover-top」实验中,DePass 保留的极少量 tokens 依然能高度恢复模型判断。这表明 DePass 能够更忠实地刻画模型内部的信息流动与输入贡献关系,实现高可信度的 token 级归因分析。
![]()
Token-Level DePass——子空间归因到输入:追踪子空间信号的 token 来源
DePass 不仅能在 token 层面追踪预测依据,还能精准定位哪些输入 token 激活了模型中「特定方向/特定语义子空间」的信号(例如「truthfulness」方向),从而识别出影响模型判断的关键来源(如误导性信息),并显著提升模型的可控性与可解释性。
在事实性任务中,团队利用 DePass 将「虚假信息子空间」拆解后,进一步将其激活分配到每个输入 token。归因结果清晰揭示了哪些词触发了模型的错误方向。基于这些 token 进行定向遮罩后,模型在 CounterFact 上的事实性准确率从约10% → 40%+大幅提升,显著优于现有 probe-based masking 方法。
![]()
Model-Component-Level DePass——模型组件级归因:观察注意力头与 MLP 神经元的实际功能
DePass 能直接量化每个注意力头与 MLP 神经元对预测的真实贡献,在遮罩实验中显著优于梯度、激活等传统重要性指标。
当遮罩 DePass 判定的「重要组件」(Top-k Masking)时,模型准确率下降更快;当仅保留「最不重要组件」(Bottom-k Masking)时,模型性能保持得更好。这说明 DePass 识别的组件重要性具备更高的敏感性、完备性、因果性,在 IOI 与 CounterFact 等任务上均显著超越 AtP、Norm 等主流归因指标。
![]()
Subspace-Level DePass——子空间级归因
DePass 还可以用于研究隐状态中不同子空间之间的相互作用,以及这些子空间对最终输出的影响。我们以语言子空间(language subspace)为例进行分析。
我们训练了一个语言分类器,并将其权重方向作为语言子空间的基向量。随后,将中间层的隐状态分别投影到语言子空间与其正交语义子空间中;两部分隐状态在网络中分别独立传播至最终层,并通过 LM Head 解码,以观察其对应输出。
这一结果说明 DePass 能忠实保留并传播子空间的功能属性,为跨语言解释和语义分解提供了全新视角。
![]()
(左)对 token 在语言子空间上的投影进行 t-SNE 可视化。(右)针对不同多语言提示语,从语言子空间与语义子空间中解码得到的前五个 token
总结
DePass 作为一种基于分解前向传播的 Transformer 解释框架,兼具简洁性与高效性。通过冻结并分配注意力得分和 MLP 激活,DePass 实现了无损的加性分解,可无缝适配各种 Transformer 架构。
实验结果表明,DePass 在多层次粒度的归因分析中具有更高的忠实性。我们期望 DePass 能成为机制可解释性研究中的通用工具,推动社区在更广泛的任务与模型上探索其潜力与应用。
八国外长发表联合声明 反对强制迁移加沙民众2025-12-07 17:18
泰国岛屿18亿再次易手,岛上度假村烂尾2025-12-07 17:07
星二代扎堆入读英国名校!争相"抄作业"的华人家庭,留学现状曝光2025-12-07 16:49
同日同州举行集会,哈里斯和特朗普各出奇招2025-12-07 16:33
野外找不着“北”?这些户外应急技巧,关键时刻能救命2025-12-07 16:31
日本一架飞机坠落悬崖 系着陆后冲出跑道2025-12-07 16:12
中考分流,到底是淘汰赛,还是岔路口?2025-12-07 16:08
胖东来“进京赶考”了2025-12-07 15:45
AI独立解决三十年数学问题的变体,陶哲轩分享自动化研究经验2025-12-07 14:59
一文讲清,专科考研和同等学力申硕的区别!2025-12-07 14:59
赖清德大放厥词,外交部:螳臂当车,注定失败2025-12-07 17:21
再入一球!亚马尔破门,巴萨32025-12-07 17:12
民航冬春航季航班计划10月27日起执行2025-12-07 17:08
警惕美国大选引爆市场波动!贝莱德:这一风险被低估2025-12-07 16:56
怼同行顺便怼老板?理想高管批理想ONE质保策略,一众车企躺枪2025-12-07 16:50
【地质地理】当地理遇上 “荷包蛋”!高考地理之如何看懂地质图2025-12-07 16:50
年内二度访华,库克承诺“加大在中国投资”2025-12-07 16:32
日本一架飞机坠落悬崖 系着陆后冲出跑道2025-12-07 16:04
心理咨询不是“万能药” 4个常见误解要注意2025-12-07 15:20
2024隋唐洛阳城夜游九洲,不容错过的夜色美景!2025-12-07 15:15